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other for small values of tan β. The two models demonstrate two different mechanisms for

EWSB and the Higgs mass generation. Their experimental signatures are quite different.

Our constructions show that a pseudo-Goldstone Higgs doublet in perturbative extensions

is just as plausible as in non-perturbative ones.

Keywords: Higgs Physics, Beyond Standard Model, Supersymmetric Standard Model.

c© SISSA 2008

mailto:bb424@cornell.edu
mailto:a.varagnolo@sns.it
http://jhep.sissa.it/stdsearch


J
H
E
P
1
1
(
2
0
0
8
)
0
2
7

Contents

1. Introduction 1

2. Model I 2

3. Model II 10

4. Conclusions 15

A. Technical details on model I 16

1. Introduction

The idea of the Higgs doublet as a pseudo-Goldstone boson of some extended global sym-

metry has been proposed to ameliorate the hierarchy problem of the Standard Model

(SM) [1]. Usually, it is linked to a new strongly interacting sector, responsible for sponta-

neous breaking of the global symmetry [2 – 4]. There are interesting signatures of this idea,

among others related to the unitarization procedure in WW scattering [5, 6]. However,

there are strong constraints on the scale f of the spontaneous breaking of global symmetry

of the strong sector. Low values of f , say f . 500 GeV, cannot be easily reconciled with

electroweak precision tests and B-physics data [7], while larger f reintroduces the hierarchy

problem with the required finetuning growing as1 (f/v)2. So, in practice, models of this

kind do not avoid certain tension.

There is some room for the idea of the Higgs doublet as a pseudo-Goldstone boson

in perturbative extensions of the SM as well, with global symmetry broken in the pertur-

bative regime. In general, one may expect such perturbative models to avoid excessive

finetuning in the ElectroWeak Symmetry Breaking (EWSB) sector with no conflict with

the electroweak precision data, generic for non-perturbative models. This possibility has

been discussed in non-supersymmetric [7, 8] and supersymmetric [9 – 14] models, however

for various reasons those models are not fully satisfactory. In the present paper we explore

it further in supersymmetric (SUSY) models with extended global symmetry of the Higgs

sector. We discuss two models which differ in various respects and illustrate various aspects

of the general approach. As global symmetry we take SU(3), the minimal one that can

give Higgs doublet as a Goldstone boson in SUSY.

The first model (Model I) remains perturbative up to the GUT scale. The global

symmetry and the electroweak symmetry are broken by radiative corrections to the mass

1Here and throughout the paper v is the electroweak scale in v ≃ 174 GeV normalization.
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parameters, generated by a large Yukawa coupling, similarly to the Minimal Supersym-

metric Standard Model (MSSM) (for earlier attempts, see [11]). Stabilization of the global

symmetry breaking scale f can be achieved by quartic scalar coupling in large tan β regime.

The model relies on the “double protection” mechanism, where the interplay between su-

persymmetry and an approximate global symmetry forbids the quadratic higgs term to

receive a large logarithmic contribution from the UV cutoff Λ ∼ MGUT which is actually

replaced by the scale of global symmetry breaking f . Thus one may hope to get, for the

same values of stop mass, much less finetuning than in the MSSM. The values f & 2TeV

minimize finetuning of the model, while at the same time allowing the physical Higgs boson

mass above the experimental bound of 115 GeV. Phenomenology of the Higgs sector of the

model is very similar to the decoupling regime of the MSSM. In particular, for f & 2TeV

the WW scattering is unitarized almost completely by the lightest Higgs boson. The model

is however distinguished by the presence of a relatively light doubly-charged Higgsino.

In our second example (Model II) supersymmetry provides a consistent framework for

stabilizing the minimum of the global symmetry breaking. It is a supersymmetric version

of the approach to the EWSB proposed in ref. [7], with the breaking driven by a tadpole of

the SU(2)×U(1) singlet component of the full scalar multiplet. An interesting point about

this mechanism is that this tadpole, while being linear in the fundamental field, generates

the Higgs quartic when the σ-model structure is taken into account. This quartic dominates

the usual D-term quartic at low tan β, so that the physical Higgs mass is determined by

the soft SUSY breaking terms only. Modell II has a very different phenomenology with

respect to MSSM since it allows for low f . However, it needs an UV completion at a scale

O(20 TeV), where the SUSY model becomes strongly interacting.

In both models finetuning is O(10%).

2. Model I

In the MSSM, the lightest Higgs boson mass is determined by the effective quartic coupling,

which depends logarithmically on the stop mass. Large tan β is then favored, to minimize

the value of the stop mass consistent with the experimental bound mh > 115 GeV, and the

finetuning in the Higgs potential. The latter is proportional to m2

t̃
log Λ and for Λ ∼ MGUT

remains, unfortunately, of order of 1%.

The model we propose in this section retains the MSSM correlation between the stop

mass and the Higgs boson mass, thus also requiring large tan β for reasonable values of mt̃.

However, it is based on the idea of the double protection of the Higgs potential [10, 11]

and gives, for the same values of mt̃, factor 10 less finetuning than MSSM.

We begin with the effective model below certain scale F based on the symmetry

SU(2)L × U(1)y, where SU(2)L is gauged subgroup of a global SU(3). Its UV completion

(above F ) can be similar to that of [11], and we will return to it below. The SU(3)-

symmetric Higgs sector consists of a triplet Hd and an antitriplet Hu, while the chiral

fermion multiplets of the top sector are the triplet Ψ = (Q,T )T and quark singlets tc and

T c.

– 2 –
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Under SU(2)L × U(1)y the triplets split into doublets Hu,d and singlets Su,d:
2

HT
d = (HT

d , Sd), Hu = (Hu, Su).

We look for a model in which the global SU(3) is spontaneously broken by vacuum expec-

tation values (VEVs) aligned so that SU(2)L × U(1)y gauge symmetry remains unbroken:

HT
d = (0, 0, fd), Hu = (0, 0, fu),

and tan β ≡ fu/fd is large. We shall assume that the soft term mass scale msoft ∼ f ≪ F .

The minimum of the SU(3)-symmetric scalar potential at large tan β generically requires

negative Hu mass squared, which leads to runaway directions, unless there is a stabilization

mechanism. Stabilization by D-terms of some, e.g. U(1), gauge interactions is not a satis-

factory mechanism [10], while stabilization by the quartic coupling |Hu|4 is constrained by

the holomorphicity of the superpotential.

With two Higgs triplet chiral superfields, the minimal field content leading to stabi-

lization by the quartic consists of two symmetric tensors Z1 and Z2,

Zi =

(

Ti Hi/
√

2

HT
i /

√
2 zi

)

.

Here the Ti’s are SU(2) triplets with Y1,2 = ±1, Hi’s are doublets with Y1,2 = ±1/2, and

zi’s are singlets. The superpotential of our model reads (in the following we anticipate

large tan β solution)

W = λZ2HuHu + µHuHd + µZZ1Z2 + yHuΨ tc + mT cT. (2.1)

The last term breaks the global SU(3) explicitly. It can originate from a UV completion

as in [11]. The scalar potential reads3

V = |λHuHu + µZZ1|2 + |2λZ2Hu + µHd|2 + µ2
Z |Z2|2 + µ2|Hu|2 + Vsoft ,

Vsoft = m2
d|Hd|2 + m2

u|Hu|2 + m2
Z1|Z1|2 + m2

Z2|Z2|2 − (m2
3HdHu + H.c.) . (2.2)

The soft terms in (2.2) depend on their initial values at the GUT scale and on the

renormalization group (RG) running in the SU(3)-symmetric theory. We expect that the

stop contribution will drive m2
u to negative values (while m2

d,m
2
Z1,Z2 > 0), and global SU(3)

is spontaneously broken. Minimizing the potential for small m2
3 (see appendix A for the

2It’s useful to keep in mind that our doublet Hu is related to the MSSM doublet Hu via Hu.our =

ε · Hu,MSSM.
3The omitted soft terms Z1Z2 and Z2HuHd will in general be produced by running from the GUT scale;

we have checked that their typical generated values are small and do not affect the dynamics.
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running of m2
3) and assuming SU(3) to be broken in the SU(2) singlet direction, we get

〈|Hu|2〉 ≡ f2
u ≃ − µ2

u

2λ2
eff

(2.3)

〈|Hu|〉
〈|Hd|〉

≡ tan β ≃ µ̃2 + m2
d

m2
3

≫ 1

〈|Z1|〉 ≡ fZ1 ≃ − λµZf2
u

µ2
Z + m2

Z1

〈|Z2|〉 ≡ fZ2 ≃ − 2λµfufd

µ2
Z + m2

Z2
+ 4λ2f2

u

where

µ2
u = m2

u + µ2 < 0 (by assumption)

λ2
eff = λ2 m2

Z1

µ2
Z + m2

Z1

µ̃2 = µ2 m2
Z2 + µ2

Z

µ2
Z + m2

Z2
+ 4λ2f2

u

The SU(3) is broken dominantly by fu and fZ1, with fd and fZ2 suppressed by large tan β.

Relative contribution of fZ1 versus fu decreases for smaller λ and µZ . The maximal value

of λ at the Fermi scale is constrained by the requirement of remaining perturbative up

to the GUT scale (see appendix A for the discussion of λ running); we choose λ = 0.2

in the following. The mass parameter m2
u gets SU(3)-symmetric negative contributions

proportional to the Yukawa coupling y and the coupling λ (see appendix A). In the

following we will discuss the constraints on the parameter range following from the demand

of no excessive finetuning in the potential for the SU(3) breaking.

Spontaneous global SU(3) breaking leads to five Goldstone bosons: an SU(2)L doublet

H and a real singlet η. The H plays the role of the SM Higgs doublet. The singlet η will

not play any role in the following discussion; we will comment on its parametrization and

physical effects below. For large tan β the Goldstones reside to a good approximation in

the Hu and Z1. Up to terms of higher order in H, we have the following parametrization

for the Goldstone bosons:

Hd ≃ αdH, Hu ≃ αuH†

H1 ≃ αZ1H
†, H2 ≃ αZ2H (2.4)

T1 ≃ fZ1

f2
H†H†, T2 ≃ fZ2

f2
H H

Su,d ≃ fu,d, z1,2 ≃ fZ1,Z2, (2.5)

where

αu,d = fu,d/f, αZi =
√

2fZi/f,

f2 = f2
u + f2

d + 2f2
Z1 + 2f2

Z2 .
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In this parametrization H has canonical kinetic term. As we will see later, experimental

limit on the Higgs mass requires fZ1,Z2 ≪ fu ∼ f.

The global SU(3) is explicitly broken by the last term in the superpotential (2.1) and

by the D-terms of SU(2)×U(1). Both terms contribute to the potential for the Goldstone

boson H:

V = δm2
H |Hu|2 + (λ0 + δλ)|Hu|4 + . . . ,

where the δm2
H and δλ are obtained from the one-loop effective potential and λ0 comes

from the D-terms. We first discuss the effective potential contribution as it is responsible

for the VEV of H and the EWSB by the top-stop loops. Diagonalizing the top mass matrix,

for large tan β we find (we introduce dimensionless coupling ỹ, m = ỹ〈|Su|〉):

mt = yt〈|Hu|〉, yt ≡
yỹ

√

y2 + ỹ2
,

mT = 〈|Su|〉
√

y2 + ỹ2.

For the couplings y and λ to remain perturbative up to the GUT scale (see appendix), we

need y . 1.2. Since yt ≃ 1 (for 〈|Hu|〉 ≃ v) we get ỹ & 1.8 and mT & 2.2〈|Su|〉, somewhat

stronger than the theoretical lower bound mT = 2yt〈|Su|〉 realized for y ≃ ỹ ≃
√

2.

To realize the double protection mechanism, we assume that soft stop masses are SU(3)-

symmetric at the scale F . To compute the effective potential, we assume for simplicity that

these masses are universal:

m2
Q(|Q̃|2 + |T̃ c|2 + |t̃c|2),

and we also neglect the possible left-right stop mixing. As in ref. [11] we get the following

result:

δm2
H = − 3

8π2
y2

t

[

m2
Q ln

(

1 +
m2

T

m2
Q

)

+ m2
T ln

(

1 +
m2

Q

m2
T

)]

+ ∆, (2.6)

where

∆ ⊃
3g2

2M2
2 + g2

yM
2
y

8π2
ln

F

Msoft

, (2.7)

the contribution due to SU(2)×U(1)y gauginos with soft masses M2,My. At the same time

the dominant contribution to δλ is given by4

δλ ≃ 3

16π2
y4

t

[

ln
m2

Q

m2
t (1 + x)

− 2x ln(1 + 1/x)

]

, x = m2
Q/m2

T . (2.8)

Notice that this correction is smaller than the corresponding MSSM correction for the

same value of the stop mass, which is due to the negative contribution of the heavy T

quark. In the mT ≫ mQ limit, which will turn out to be relevant below, we recover the

standard MSSM equations, with the important difference that the scale of the logarithm

in (2.6) is given by mT instead of MGUT.

4The formula given in [11] contains an extra +3/2 term in square brackets. Our formula is correct

provided that δλ is defined as the coefficient in the Higgs mass correction formula, eq. (2.9).
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The D-term potential reads:

VD =
g2 + g2

y

8

(

|Hu|2 − |Hd|2 + |H1|2 − |H2|2
)2

=
g2 + g2

y

8
(α2

u − α2
d + α2

Z1 − α2
Z2)

2|H|4.

For the Higgs boson mass we get the following result:

m2
h ≃

(

1 − v2/f2
) [

M2
Z(α2

u − α2
d + α2

Z1 − α2
Z2)

2 + 4δλα4
u v2

]

. (2.9)

The overall suppression factor is due to the σ-model correction to the wavefunction nor-

malization of the Higgs doublet; it can be derived by keeping track of terms higher order

in H which were omitted in (2.4). Considering the large tan β suppression resulting in αd

and αZ2 going to zero, we see that for a given δλ the Higgs boson mass is maximized for

tan β → ∞, αZ1 → 0, f → ∞, (2.10)

mmax
h =

(

M2
Z + 4δλ v2

)1/2
. (2.11)

Expanding in the small negative corrections appearing when these parameters deviate from

their optimal values, (2.9) can be numerically parametrized as follows

mh ≃ mmax
h − 1 GeV

[

(

12

tan β

)2

+

(

1.3 TeV

f

)2

+
(αZ1

0.15

)2

]

, (2.12)

where the first and the second corrections come from finite values of tan β and f respec-

tively, and the third from a nonzero αZ1. Since mmax
h cannot be much above 115 GeV

without a significant increase in finetuning (see Figs 1, 2 below), we should not allow the

total loss in (2.12) to exceed 1 ÷ 2 GeV, which implies obvious constraints on the relevant

parameters.

We now discuss the results for the Higgs boson mass and estimate the level of fine-

tuning. In figure 1 we plot the Higgs boson mass (2.11) (i.e. without negative corrections

given in (2.12)) as a function of mQ and mT , using δλ from eq. (2.8) with mt = 172 GeV.

Similarly to the MSSM, the Higgs boson mass increases with mQ. For a fixed mQ, the

correction is maximized in the mT ≫ mQ limit.

In figure 2 we plot the finetuning in the Higgs mass term m2|H|2 which is needed to

compensate the top-stop contribution (2.6):

FT1 =
δm2

H |∆=0

m2
h/2

. (2.13)

This finetuning increases quadratically with mQ, but grows only logarithmically with

mT . Comparing figure 1 with figure 2, we see that mQ ∼ 800 GeV and mT & 2.5 TeV

give mh > 115 GeV with about 10% finetuning (FT1 = 10). Soft stop masses as small as

mQ ∼ 600 GeV are possible provided that mT is raised up to 4 TeV.

Another source of finetuning in Model I is the SU(3)-symmetric top-stop contribution

to the m2
u parameter of the scalar potential (2.2), which by (2.3) should not exceed 2λ2f2

u .

The corresponding finetuning parameter

FT2 = δm2
u,stop/(2λ

2f2) (2.14)

– 6 –
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Figure 1: The maximal Higgs boson mass (2.11) as a function of mQ and mT , see the text.
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Figure 2: Finetuning (2.13) in the Higgs mass parameter needed to compensate for the top-stop

loop contribution (2.6).

is plotted in the mQ−f plane in figure 3, where we assume y ≃ 1, λ = 0.2. We see that this

finetuning is less than 20% (FT2 < 5) for mQ ∼ 800 GeV and f & 2 TeV, which however

translates into mT above 4 TeV.

In general raising f (and mT ≃ 2f) we eliminate FT2 while FT1 grows only logarithmi-

cally. Unfortunately, in this limit the heavy top quark becomes undiscoverable at the LHC,

and the scalar spectrum of the model resembles the standard MSSM at large tan β in the

decoupling limit. In this case the only significant difference from the MSSM is the presence

in the low-energy spectrum of states described by the tensors Z1 and Z2, i.e. triplets Ti,

doublets Hi and singlets zi. The triplets contain doubly (T̃++
1 or T̃−−

2 ) and singly (T̃+
1 or

T̃−
2 ) charged and neutral (T̃ 0

1 or T̃ 0
2 ) higgsinos and their scalar partners. Doublets Hi have

the same composition as the Higgs chiral superfields Hu,d. All those fields have common

supersymmetric mass parameter µZ . It enters in the equation (2.3) for the VEV of z1 and

is constrained by the requirement that no large negative αZ1-correction to the Higgs boson
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Figure 3: Finetuning (2.14) in the SU(3)-symmetric mass parameter m2

u, see the text.

mass should be present in eq. (2.12). Assuming that all scalar soft masses are of the same

order:

MSUSY ∼ mu ∼
√

2λf ∼ 0.3f ,

µZ is bounded by

µZ . αZ1msoft . f/20.

This estimate, while being subject to significant uncertainty, does indicate that the masses

of new fermions, in particular of the doubly charged Higgsinos, are expected to be below

200÷ 300 GeV even for f as high as 2TeV. We shall return to the phenomenological issues

at the end of this section.

Finally, we need to comment on several other issues which are important for the con-

sistency of our model. First, we note that the model can be UV completed as in ref. [11],

with the gauge group SU(3)×U(1)x broken to the electroweak SU(2)×U(1)y at the scale

F . An extra pair of triplets ΦU,D is responsible for this breaking, so that the full global

symmetry of the scalar potential is SU(3)× SU(3). The SU(3)-breaking term mT cT in the

Model I superpotential (2.1) originates naturally from an SU(3)-symmetric term

y1ΦUΨT c, y1 ∼ m/F = ỹf/F, (2.15)

of the UV completed superpotential. As explained in [11], the soft mass terms of the

ΦU and ΦD fields have to be very nearly universal at F , since their difference m2
D − m2

U

contributes to the mass term of the Higgs doublet via D-terms. Even assuming that these

masses are universal at the GUT scale, superpotential interaction (2.15) will contribute to

the running of m2
U , so that at F the masses will be split by

m2
D − m2

U ≃ 3y2
1

8π2
(m2

Q + m2
T c) ln

MGUT

F

This contribution must be . v2 which can be achieved by choosing F & 10f as can be seen

from the second eq. in (2.15).
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On the other hand the F scale cannot be too high because of the gaugino contributions

to the Higgs mass, eq. (2.7).

For completeness we have to say a few words about the 5th Goldstone boson η,

a gauge singlet axion, which appears in addition to the Higgs doublet when SU(3) is

broken spontaneously to SU(2), as already mentioned above. This Goldstone is as-

sociated with a global U(1) under which the gauge singlet components have charges

Su(+1/2), Sd(−1/2), z1(+1), z2(−1), equal to the hypercharge of the upper components

of the same SU(3) multiplets; it resides mostly in the phase of Su whose VEV dominates

the spontaneous symmetry breaking:

Su ≃ fu exp(iη/
√

2fu) .

The η does not get mass from the SU(3)-breaking terms which we so far considered, since

they preserve the above U(1); it can however get mass if we add a small SU(3)-breaking

tadpole

∆Vsoft = −m3
SSu + H.c., (2.16)

which gives m2
η = m3

S/f. This term breaks Su → −Su symmetry and can be generated

radiatively by adding to the superpotential a small term ∆W = m′Ttc breaking the same

symmetry:

m3
S ≃ − 3y

2π2
m′m2

Q ln
MGUT

F
.

It should be noticed however that the discussed axion, even if exactly massless, would not

be in conflict with experiment [11], since it couples very weakly to the ordinary matter

(such a coupling could for example proceed via mixing with heavy fermions which are

needed to implement the SU(3) symmetry in the first and second generations).

Our last comment concerns the impact of the triplets T1, T2 on the precision elec-

troweak observables. According to eq. (2.4) they get VEVs, T 11
i ≃ fZi

v2

f2 . Since according

to our discussion below eq. (2.12) we need fZ1 < 0.1f (and fZ2 is even smaller), the

contribution of the triplets to the ρ parameter is sufficiently suppressed:

δρ = −2
(T 11

1 )2

v2
, |δρ| < 10−4

(

1.7 TeV

f

)2

.

We conclude that Model I is a fully consistent example of a supersymmetric model

with a Higgs doublet as a Goldstone boson of extended global symmetry, perturbative up

to the GUT scale and with large tan β. Its phenomenology is similar to phenomenology

of the MSSM in the decoupling limit, but finetuning in the Higgs potential is diminished

by at least a factor 10 compared to MSSM. The lightest Higgs mass is expected to be

just above 115 GeV, with stop around 800 GeV, and the new top quark above 3 ÷ 4TeV,

probably unreachable at the LHC. However, stabilization of the SU(3) breaking potential

requires new states. The extended scalar sector of Model I is unlikely to manifest itself at

the LHC, since these particles are expected to be quite heavy (apart from the decoupled

axion η), while their couplings to WW and tt̄ are suppressed due to large tan β and f/v

ratio.
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Among new fermions, there are those with the same quantum numbers of MSSM

chargino and neutralino states. However, the mixing between MSSM states and these new

fermions is small because fZi ≪ f and the mass eigenstates remain almost MSSM-like.

The new mass eigenstates, including T̃±± and z̃i’s, are almost degenerate in mass, with

masses m ≈ µZ ≈ 200 GeV. The details of the mass spectrum depend on the details of

the mixing. Thus we expect new light fermions doubling the MSSM states, but the best

chance to see a trace of the SU(3) structure is probably the doubly charged Higgsino. At

the LHC, this double-chargino T̃±± will be pair-produced via the Drell-Yan process. It will

most likely undergo a chain decay into T̃± and W and finally into the lightest neutralino

and two same sign W bosons. Because of an approximate degeneracy of the mass spectra

the decay products are likely to be off-shell. The double-chargino is likely to be long-lived

and the decay vertex may be displaced. In any case, we expect events with two opposite-

hemisphere pairs of same-sign leptons and missing transverse energy in the final state. We

are not aware of experimental studies for signals of this type.5 By analogy with Drell-Yan

chargino-neutralino searches, we can optimistically estimate the LHC integrated luminosity

required for the discovery of T̃±± to be O(100) fb−1. The fermionic neutral singlets z̃i’s may

also be phenomenologically interesting. Depending on the details of the mass spectrum one

of them may be the LSP and a potential candidate for dark matter particle. Our model

provides then a concrete example of a spectrum going beyond the MSSM spectrum. More

detailed phenomenological study of such and similar spectra are of experimental interest

but beyond the scope of this paper.

3. Model II

It has been emphasized in [7] (following an earlier observation in [2]), that in models with

extended global symmetry there exists also a mechanism for EWSB and the Higgs boson

mass generation based on a tadpole contribution of an SU(2) × U(1) singlet component

of the full scalar multiplet. This mechanism necessarily requires a small value of f , to

minimize finetuning in the Higgs potential. In turn, this implies large quartic coupling and

low UV cutoff. On the other hand, high enough Higgs boson mass can be produced even

for moderate tan β.

The simplest model achieving stabilization of SU(3) breaking at small f includes two

Higgs triplets Hd and Hu, same as in Model I, and an SU(3) singlet N , with the superpo-

tential

W = κNHuHd.

As we will see, it generically leads to low values of tan β. We must have κ ≤ 2 for the

Landau pole to be above ΛUV = 20 − 30 TeV; we will choose κ = 2 in what follows. All

5In [18] doubly charged Higgsinos with a significant coupling to leptons were considered, so that a

dominant decay mode is into slepton-lepton pairs, with the slepton subsequently decaying into a lepton

plus neutralino. This gives rise to a practically background-free same-sign, same-flavor lepton pair and

missing energy signature. Such couplings in our model would violate the lepton number conservation and

are by no means necessary (if allowed at all). Our case is definitely more challenging experimentally.
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RG runnings below are considered from ΛUV down to the Fermi scale, log ΛUV

MSUSY
≃ 3 for

MSUSY ∼ 1 TeV.

The scalar potential reads:

V = κ2[|HuHd|2 + |N |2(|Hu|2 + |Hd|2)] + Vsoft

Vsoft = m2
u|Hu|2 + m2

d|Hd|2 + m2
N |N |2 − (A3N + m2

3HuHd + H.c.) (3.1)

The masses m2
u,d,m

2
N need to be positive to avoid runaway. We use m2

3 to break SU(3)

spontaneously, while A3 will give a VEV to N and generate an effective µ-term (chargino

mass). It is consistent to assume that all terms which are not included at the tree level

remain small or vanish. e.g. A′NH1H2 term is generated by gaugino masses,

δA′ ∼ g2κM2

16π2
× 3 ∼ 0.02M2 .

Possible modifications of the model can be obtained by adding µHuHd and/or κF 2N terms

to the superpotential, as well as NHuHd term to Vsoft. These modifications lead to models

of comparable “quality”, and we will not consider them.

Minimization of the potential (3.1) in the gauge singlet direction gives

〈|Hu,d|〉 ≡ fu,d, f2 ≡ f2
u + f2

d =
m2

3 − µuµd

κ2 sin β cos β
, tan β ≡ fu

fd
=

µd

µu
, (3.2)

µ2
u,d ≡ m2

u,d + µ2, µ ≡ κfN , 〈|N |〉 ≡ fN =
A3

m2
N + κ2f2

,

where we continue using notation of section 2 for the components of Hd and Hu.

As in Model I, spontaneous breaking of SU(3) to SU(2) generates five Goldstone bosons,

a doublet H and an axion. SU(3) symmetry must then be broken also explicitly, to get

a potential for H, which will break electroweak symmetry. In this model the presence

of the soft term m2
3 results in nonvanishing VEVs fu,d,N breaking the global SU(3). To

avoid any risk of destabilization of the SU(3) breaking potential by a negative m2
u, we keep

the top-stop sector as in MSSM. Thus, SU(3) is explicitly broken by the top-stop sector.

The standard RG running from ΛUV generates a negative contribution to the Higgs mass

squared

−δm2
H |Hu|2 ≡ −δm2

H

(

|Hu|2 − |Su|2
)

(3.3)

Another source of the explicit SU(3) breaking is a tadpole contribution m3
SSu, which, we

assume, is generated by strong dynamics at ΛUV.6 Making use of (3.3), we can write the

full SU(3) breaking potential as a function of Su:

∆V = m2
H |Su|2 −

(

m3
SSu + H.c.

)

, (3.4)

which has the clear advantage of completely decoupling the SU(3)-symmetric potential

minimization and vacuum disalignment. In this parametrization, we view the |Hu|2 con-

tribution in (3.3) as a renormalization of m2
u parameter in (3.1). Minimizing the CP-even

6Perturbative origin of the tadpole could be engineered if desired by breaking Su → −Su symmetry in

the superpotential, similarly to the generation of (2.16) in Model I.
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part of (3.4), we find the VEV of Su:

〈|Su|〉 =
m3

S

m2
H

,

where we have to assume that the found minimum satisfies |Su| < fu, otherwise the true

minimum will be at Su ≃ ±fu with no EWSB. On the other hand, |Su| < fu means vacuum

disalignment, with the Higgs VEV

〈|Hu|2〉 ≡ v2
u = f2

u − 〈|Su|2〉 (3.5)

and the EWSB scale given by

v2 = v2
u + v2

d = f2

[

1 −
(

m3
S

fum2
H

)2
]

. (3.6)

We see that v ≪ f can be obtained only at the price of finetuning the ratio m3
S/fum2

H to

1. To illustrate this finetuning more clearly, we can express (3.4) as a function of |Hu| by

expanding Su =
√

|fu|2 − |Hu|2, which is a good approximation for v ≪ f :

∆V ≃ const − (m2
H − m3

S/fu)|Hu|2 + λ|Hu|4 + . . . , λ =
m3

S

4f3
u

. (3.7)

We now see the origin of finetuning: it appears since we are canceling the O(f2) Higgs

mass term with the quadratic term appearing in the expansion of
√

f2
u − |Hu|2, taking

advantage of the non-linear structure of the σ-model.

The finetuning discussed above can be quantified by means of the usual logarithmic

derivative, or by measuring the portion of the uniformly distributed parameter space sat-

isfying v ≤ 174 GeV; we get [7]7

FT ≃ 2f2

v2
. (3.8)

As a reference value we fix f = 350 GeV, corresponding to O(10)% finetuning.8

Other potential sources of finetuning in Model II are related to the RG running of the

SU(3)-symmetric potential parameters. According to eq. (3.2) to avoid large cancellations

in the potential for SU(3) breaking, we must have

µuµd . κ2f2/2 (3.9)

i.e. effectively

µ2, m2
u, m2

d . κ2f2/4 .

7This finetuning does not increase even if mH and mS are scaled up, because the Higgs quartic λ in (3.7)

and, correspondingly, the Higgs mass (see below), increases in the same limit, “improving naturalness” in

the sense of [15].
8Comparing with [7], notice a factor

√
2 difference in normalization of f resulting from the change from

real to complex fields. Our f = 350 GeV gives the same finetuning as f ≃ 500 GeV in [7].
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As mentioned above, the |Hu|2 in eq. (3.3) effectively renormalizes m2
u; naturalness thus

requires that

δm2
H =

3

4π2
y2

t m
2

t̃
log

ΛUV

MSUSY

∼
m2

t̃

4 sin2 β
. m2

u . κ2f2/4 . (3.10)

Thus we get

mt̃ . sin β κf . (3.11)

Finally, we discuss the Higgs boson mass. The same expansion of the square root which

allows us to finetune v ≪ f in (3.7), also generates a Higgs quartic λ. For small tan β this

quartic easily dominates the standard D-term quartic; as a result the Higgs boson mass is

solely determined by the soft terms and the coupling κ. Taking into account the σ-model

wavefunction suppression and also using the exact expression of the Higgs potential (3.4)

instead of expanding in Hu, we find the Higgs boson mass

mh = sin β(mH/f)v .

If we assume that m2
H is entirely generated by stop loops we get

mh =
v

2

mt̃

f
,

and thus mt̃ ≃
√

2f for mh ≃ 120 GeV, consistently with the constraint (3.11) on mt̃ for

low tan β. The model then predicts a light Higgs boson since larger values of mt̃/f are

inconsistent with the constraint (3.11).

We will discuss phenomenology of Model II for f = 350 GeV, 1 ≤ tan β ≤ 2, and

κ = 2.We choose the potential parameters as follows (t ≡ tan β):

µ2 = m2
u =

κ2f2/2

1 + t2
, m2

d =
2t2 − 1

t2 + 1
κ2f2/2 ,

m2
3 =

2κ2f2

t + t−1
, m2

N = 6m2
u, A3 = (m2

N + κ2f2)
µ

κ
,

which is consistent with naturalness and produces a minimum of the potential at the given

values of f and tan β. We see that Higgsinos are expected to be light, µ ∼ 100÷ 200 GeV,

for f = 350 GeV.

Furthermore, since f is small, phenomenology of the model is strongly influenced by

its non-linear structure. We recall that in the σ-model approximation

Hu = fu

(

H
|H| sin( |H|

f )

cos( |H|
f )

)

(3.12)

and similarly for Hd (|H| =
√

H†H). We also can parametrize the Higgs doublet H

nonlinearly:

H = Σ

(

0

v̄ + h/
√

2

)

, (3.13)
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where Σ = eiT aGa/v is the pion field containing the Goldstone bosons eaten by the W and

Z. The fields are canonically normalized. The true electroweak scale reads v = f sin(v̄/f).

Additional heavy scalar modes describe deviation from the σ-model structure (3.12). For

instance, fluctuations in the radial directions can be introduced by replacing

fu,d → fu,d + su,d/
√

2. (3.14)

We are interested in the couplings of the scalars h, su, sd to the vector boson pairs. By

the equivalence theorem, these couplings can be obtained from the kinetic part of the

Lagrangian for Hu and Hd inserting (3.13) into (3.12). The couplings of su,d are found

using (3.14). We get:

L = v2|DµΣ|2 +
√

2v|DµΣ|2
[

cos(v̄/f)h +
v

f
(cos β su + sin β sd)

]

(3.15)

We see that the h coupling to pions, and hence to WW, is suppressed by cos(v̄/f) =
(

1 − v2/f2
)1/2

, and h unitarizes WW amplitude only partially. Unitarization is completed

by the exchange of the heavy scalars. The su,dWW couplings appear because the radial

directions obtain nonzero projection on the first two components of Hu,d when expanded

around v 6= 0.

The fields su and sd are not mass eigenstates. In the mass matrix, they mix with each

other and also with the radial excitation of N . Thus, three heavy mass eigenstates complete

the unitarization of WW scattering. Denoting the mass eigenstates by Si, i = 1, 2, 3, e.g.

for f = 350 GeV, κ = 2 and tan β = 2 we get mSi
≃ (290, 850, 1000) GeV. The cubic

WW -scalar interaction Lagrangian in this case is given by

L = gSM
WWh[cos(v̄/f)h + (v/f)ciSi]W

2
µ , (3.16)

c ≃ (0.86,−0.13,−0.5), c2
i = 1,

so that the WW scattering is fully unitarized above mS3.

Other important couplings are the Sit̄t couplings as they determine the production

rate of these scalars via the gluon fusion. They originate from the term

yt
v

f

su√
2
tt̄, yt ≡

mt

v sin β
,

which appears similarly to the su,dWW couplings discussed above. Due to the v/f coupling

suppression, production rates of the heavy scalars via the gluon fusion, as well as via the

vector boson fusion, will be suppressed by at least one order of magnitude with respect to

the corresponding production rates for the SM Higgs boson of the same mass. Nevertheless,

at least the lightest of these heavy scalars should be quite easy to discover at the LHC in

the gold-plated decays S1 → ZZ → 4l.

Apart from the radial modes (3.14), another interesting heavy mode is a longitudinal

fluctuation orthogonal to the pseudo-Goldstone mode:

Hu = cos β H1, Hd = − sinβH1. (3.17)
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The SU(2) doublet H1 does not get a VEV and is decoupled from the vector boson pairs; it

is analogous to the heavy MSSM doublet in the decoupling limit. It describes a degenerate

heavy multiplet (H±,H0, A0) of mass

m2
H1 ≃ µuµd

sin β cos β
,

which can be found substituting (3.17) into the scalar potential. By (3.9), we expect

mH1 = O(κf) ∼ 700 GeV. The neutral members of this multiplet couple to tt̄ with strength

cot β times the SM Higgs coupling. They will be produced via gluon fusion and will be seen

as narrow resonances decaying into tt̄ pairs (total width around 30 GeV). Using the model-

independent analysis of [16], we can estimate that O(10) fb−1 of integrated luminosity could

be enough for their discovery at the LHC.

Finally, we discuss the effect of the heavy scalars on the electroweak observables. As

pointed out in ref. [7], the relevant parameter is the effective Higgs boson mass, which in

our case is given by

mEWPT = mh

(

m̄

mh

)
v2

f2

, m̄ =
∏

(mSi
)c

2
i ,

where the ci are the parameters appearing in the WW -scalar interaction Lagrangian (3.16).

In our numerical example we get m̄ = 400 GeV and mEWPT = 155 GeV for mh = 115 GeV.

Thus, mEWPT is slightly above the 144 GeV 95% C.L. limit, but various other supersym-

metric contributions can easily compensate its effect in the (S, T ) plane.

4. Conclusions

We have presented two realistic supersymmetric models with Higgs doublet as Goldstone

boson of a spontaneously broken extended global symmetry. Model I is perturbative up to

the GUT scale and realizes large tan β scenario, while Model II requires a rather low UV

cut-off (∼ 20 TeV) and generically gives low tan β. Both models avoid excessive finetuning

in the Higgs potential and are in fact motivated by this requirement. Being perturbative

up to much higher cut-off than so-called “strongly interacting” models, they do not lead to

any serious tension with precision electroweak data. The two models illustrate two different

mechanisms for EWSB and the Higgs mass generation. Their experimental signatures are

quite different. Clearly, the price for a small finetuning is some complexity (e.g. compared to

the MSSM). Our constructions supplement the list of previous proposals for ameliorating

the supersymmetric little hierarchy problem. e.g. the Next-to-Minimal Supersymmetric

Standard Model easily solves the little hierarchy if its SHuHd coupling λ is allowed to

become strong below the GUT scale (a possibility recently taken to the extreme in [17]).

Its predictions are different from Model II as, for instance, it does not predict non-linear

effects in the scalar couplings. We will wait and see what experiment tells us. For the

moment, the main lesson of our constructions is that the possibility of the Higgs boson as

a Goldstone boson in perturbative theories looks equally plausible as in non-perturbative

scenarios with low cut-off and actually more predictive.
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A. Technical details on model I

In this appendix we collect some technical details relevant for Model I. It is convenient to

normalize all charges and couplings with the UV completion into SU(3) × U(1)x in mind.

For instance Hu has SU(3) × U(1)x quantum numbers 31/3,

DHu = (W aT a + 1/3Bx)Hu .

The unbroken generator is Y = 1√
3
T 8 + X. The SU(3) gauge coupling g coincides at the

scale F with the SU(2) gauge coupling g2. The U(1)y coupling gy at F is:

gy =
ggx

√

g2 + g2
x/3

.

Numerical values of g and gx are 0.65 and 0.37 respectively. The RG equation for m2
3 in

eq. (2.2) valid above F reads

16π2 dm2
3

d log Λ
= −16

3
g2Mµ + U(1)x-gaugino contribution.

Here M is the SU(3)-symmetric gaugino mass. For the running from the GUT scale we get

δm2
3 ∼ 0.4Mµ .

From (2.3), the natural value of tanβ is m2
d/δm

2
3. We see that tan β = O(10) is naturally

allowed, provided that md is a factor of a few larger than M,µ. Running from F down

generates only HuHd coefficient which is much smaller since the running is very short.

Other mass parameters whose running is of interest for the model are m2
u and m2

Z2.

For log MGUT/F ∼ 30 one gets

δm2
u =

1

16π2
6y2

(

m2
Q + m2

T c + m2
u

)

× 30 +
1

16π2
16λ2

(

m2
u + m2

Z2

)

× 30

δm2
Z2 =

1

16π2
4λ2

(

m2
u + m2

Z2

)

× 30

The dominant contribution comes from the term proportional to the Yukawa coupling. It

makes m2
u negative and breaks the global SU(3) symmetry radiatively.

Finally, we discuss the perturbativity constraint up to the GUT scale on the couplings

λ and y. The RG equations read:

16π2 dy

d log Λ
= y

(

7y2 + 8λ2 − 16

3
(g2

3 + g2) − O(g2
x)

)

16π2 dλ

d log Λ
= λ

(

18λ2 + 6y2 − 12g2 − 4

3
g2
x

)

where g3 is the strong coupling constant. One can check that the safe range for values of

the couplings at the scale F is y . 1.2, λ . 0.3.
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